¹Ù·½QQ
¹Ù·½Î¢ÐÅ
ÊÖ»ú°æ
ÄúµÄλÖãºÊ×Ò³ >˶ʿÉúµ¼Ê¦>ÖÐÒ©×ÊÔ´·½Ïò>ÏêϸÄÚÈÝ

ÖÐÒ©×ÊÔ´·½Ïò

Íõϣط

6889caa65f79440690729aa9e4605083.jpg

Ò»¡¢¸öÈ˼ò½é

Íõϣط£¬²©Ê¿¡¢½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦£»2005Äê±ÏÒµÓÚ±±¾©´óѧ»ñÉúÎïÐÅϢѧ²©Ê¿Ñ§Î»£»Ô­ÃÀ¹úÇÇÖÎÑÇ´óѧÑо¿Ô±¡¢ÒÅ´«Ñ§²©µ¼¡¢»ª±±Àí¹¤´óѧ¹«¹²ÎÀÉúѧ²©µ¼£»¹ú¼ÒÖصãרÏîίԱ»áÆÀίԱ¡¢¹ú¼ÊÃÞ»¨»ùÒò×éרί»áίԱ¡¢¹ú¼Ê¼ÆËãÉúÎïѧѧ»á»áÔ±¡¢¹ú¼Ê·Ö×Ó½ø»¯Ñ§»á»áÔ±¡¢ÃÀ¹úÒÅ´«Ñ§»á»áÔ±¡¢ÖйúÉúÎ﹤³Ìѧ»áÉúÎïÐÅϢרί»áίԱ£»ºÓ±±Ê¡¡°ÈýÈýÈýÈ˲Ź¤³Ì¡±Ñ§Õß¡¢Ê¡°ÙÈËѧÕß¡¢Ê¡½ÜÇà¡¢½ÌÓýÌüÐÂÊÀ¼ÍÈ˲š£

Ö÷Òª´ÓÊÂÉúÎïÐÅϢѧºÍ»ùÒò×éѧµÄÑо¿£¬ÔÚ¶à¸öÖ²Îï»ùÒò×é²âÐòµÄ¹ú¼ÊºÏ×÷ÏîÄ¿ÖÐÈÎÉúÎïÐÅϢѧ/±È½Ï»ùÒò×éѧ·ÖÎöµÄÊ×ϯ¿Æѧ¼Ò»òÑо¿×é×鳤£»×÷Ϊ¹ú¼ÊÖ²Îï»ùÒò×éÐÅϢѧÁìÓòÖøÃûר¼ÒÖ®Ò»£¬È¡µÃÁ˶àÏîÍ»³öµÄ¶À´´ÐԳɹû£ºÉúÎïÐÅϢѧÈí¼þºÍÊý¾Ý¿â¿ª·¢£¬È¾É«Ìå½ø»¯ÀíÂÛ´´Ð£¬»ùÒò×é¶à±¶»¯ÓëÎȶ¨ÐÔÑо¿£¬ÖØÒª¾­¼Ã×÷ÎïÈ«»ùÒò×é±È¶ÔËã·¨ºÍÓ¦ÓÃÑо¿£¬»ùÒò¼Ò×åºÍµ÷¿ØÍøÂçÑо¿¡£

ÔÚȾɫÌåÊý¼õÉÙÀíÂÛ¡¢BȾɫÌåÆðÔ´µÄ·Ö×Ó»úÖÆ¡¢Ö²Îï»ùÒò×éѧµÈ·½ÃæÈ¡µÃ¶àÏîÔ­´´ÐԳɹû£¬Ìá³ö¸´ÔÓ»ùÒò½á¹¹·ÖÎö½ð±ê×¼£»¿ª·¢Èí¼þÖ²Îï»ùÒò×é·ÖÎöÈí¼þColinearScan¡¢MCScan£¬¿ª·¢Ö²Îï»ùÒò×é¼Ó±¶Êý¾Ý¿âPGDD£¬Äê·ÃÎÊÁ¿´ïǧÍò´Î¡£Ö÷³Ö¹ú¼Ò×ÔÈ»»ù½ð6Ïî¡¢ÁªºÏ»ù½ð1¸ö¡¢ÖصãÏîÄ¿×Ó¿ÎÌâ1¸ö£»Ñ§ÊõÂÛÎÄ80Óàƪ£¬Ò»×÷18ƪ£¬Í¨Ñ¶×÷Õß32ƪ£¬×÷ΪÊ×ϯ¿Æѧ¼ÒÖ®Ò»·¢±íµÄÂÛÎÄ6ƪ£¬ËûÒý15000´ÎÒÔÉÏ£¬Á½Æª½øÈëESI¸ß±»Òýǧ·ÖÖ®Ò»£¬9ƪ½øÈë1%¡£H-index 41¡£

Ö÷³Ö¹ú¼Ê¶¯Ö²Îï»ùÒò×é´ó»á¡°»ùÒò×éÌØÕ÷ÓëȾɫÌ幦ÄÜ¡±»á³¡¡¢Ö÷³ÖµÚ17½ì¹ú¼ÊÖ²Îïѧ´ó»á¡°Ö²Îï»ùÒò×é¶à±¶»¯¡±»á³¡£»¾­³£ÔÚ¹úÄÚÍâ»áÒéºÍÖªÃû´óѧ±¨¸æÑо¿³É¹û¡£

 

¶þ¡¢´ú±íÐԳɹû

1. Weijian Zhuang*, Xiyin Wang*, Rajeev K. Varshney, Hua Chen, Meng Yang, Chong Zhang, Pengchuan Sun, Andrew H. Paterson. Reply: two different models of peanut origination. Nature Genetics. 2020 May 11. (¹²Í¬µÚÒ»ÇÒ¹²Í¬Í¨Ñ¶)

2. Yang Y, Sun P, Lv L, Wang D, Ru D, Li Y, Ma T, Zhang L, Shen X, Meng F, JiaoB, Shan L, Liu M, Wang Q, Qin Z, Xi Z*, Wang X*, Davis CC*, Liu J*. Prickly waterlilyand rigid hornwort genomes shed light on early angiosperm evolution. Nat Plants. 2020 Feb 24. (¹²Í¬Í¨Ñ¶)

3. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics.2019 (¹²Í¬Í¨Ñ¶)

4. Recursive paleohexaploidization shapes the durian genome. Plant Physiology. 2019 (ͨѶ×÷Õß)

5. Two Likely Auto-Tetraploidization Events Shaped Kiwifruit Genome and Contributed to Establishment of the Actinidiaceae Family. iScience.2018 (ͨѶ×÷Õß)

6. An Overlooked Paleotetraploidization in Cucurbitaceae. Molecular Biology and Evolution. 2017 (ͨѶ×÷Õß)

7. Hierarchically aligning 10 legume genomes establishes a family-level genomics platform. Plant Physiology. 2017 (ͨѶ×÷Õß)

8. Draft genome of the peanut A-genome progenitor(Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Plant Biology. 2016 (ͨѶ×÷Õß)

9. Genome alignment spanning major Poaceae Lineages Reveals Heterogeneous evolutionary rates and alters inferred dates for key evolutionary events. Molecular Plant. 2015 (µÚÒ»×÷Õß)

10. Telomere-centric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes. New Phytologist. 2014 (µÚÒ»×÷Õß)

11. Comparative Analysis of Miscanthus and Saccharum Reveals a Shared Whole-Genome Duplication but Different Evolutionary Fates. Plant Cell. 2014 (¹²Í¬Ò»×÷)

12. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleoplyploidizations. BMC Genomics. 2011 (µÚÒ»×÷Õß)

13. Comparative analysis of peanut NBS-LRR gene clusters suggests evolutionary innovation among duplicated domains and erosion of gene microsynteny. New Phytologist. 2011 (¹²Í¬Ò»×÷)

14. Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell. 2011 (µÚÒ»×÷Õß)

15. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biology. 2009 (µÚÒ»×÷Õß)

16. Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Research. 2009 (µÚÒ»×÷Õß)

17. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009

ÖÕÉó£ºÒ©Ñ§Ôº×ܹÜÀíÕ˺Å